A Unified Approach to Unimodality of Gaussian Polynomials

Project maintained by wongey Hosted on GitHub Pages — Theme by mattgraham

In 2013, Pak and Panova proved the strict unimodality property of q-binomial coefficients QBinomial[l+m,m] (as polynomials in q) based on the combinatorics of Young tableaux and the semigroup property of Kronecker coefficients. They showed it to be true for all l,m ≥ 8 and a few other cases. We propose a different approach to this problem based on computer algebra, where we establish a closed form for the coefficients of these polynomials and then use cylindrical algebraic decomposition to identify exactly the range of coefficients where strict unimodality holds. This strategy allows us to tackle generalizations of the problem, e.g., to show unimodality with larger gaps or unimodality of related sequences. In particular, we present proofs of two additional cases of a conjecture by Stanley and Zanello.



Computation Files

Past and Upcoming Talks