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Abstract. We discuss the strategies and difficulties of determining a
recurrence which a certain polynomial (in the form of a symbolic mul-
tiple sum) satisfies. The polynomial comes from an analysis of integral
estimators derived via quasi-Monte Carlo methods.
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1 The Problem

Recently, Wiart and Wong [5] derived a formula for the covariance of an in-
tegral estimator for functions satisfying a certain decay condition, based on a
quasi-Monte Carlo framework developed by Wiart, Lemieux, and Dong [4]. This
formula is written as the following polynomial in x,
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where cm(k) = max(k−m, 0). The goal is to show that (1) is not positive for all
b,m, s ∈ N, b ≥ 2 and x ∈ [0, 1). We choose to approach this problem from the
view of symbolic computation rather than analysis: we use the available sym-
bolic tools for holonomic functions [1–3] to carry out a guess and prove strategy
in order to deduce a suitable closed form for (1). This closed form contains
hypergeometric series which is then used to prove the desired non-positivity
statement, after applying some non-trivial manipulations and transformations.
On a first glance, we note that all constituents of (1) have the property of being
“holonomic” (roughly speaking, they satisfy recurrences with polynomial coeffi-
cients). The binomial coefficient, for example, can be described completely via
such recurrences and some initial conditions (notably: finitely many).

This note serves the purpose of outlining the “proving” aspect, where we
confirm via creative telescoping [7] that (1) satisfies a third-order linear recur-
rence in s (which can later be solved using [3], yielding an equivalent but simpler
expression for (1)). Such a recurrence can be represented by an operator in a
certain Ore algebra that maps the sequence Gs to the zero sequence: we will refer
to such operators as “annihilators” of Gs. The creative telescoping algorithm, as
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implemented in the HolonomicFunctions package [2], identifies lists of operators
(in the form of Ore polynomials in the above mentioned algebra) P and Q that
give relations of the form∑

k

P · summand−
∑
k

(Sk − 1) ·Q · summand = 0, (2)

for each P ∈ P and its corresponding Q ∈ Q, where Sk denotes the forward
shift operator in k. The set P contains the so-called “telescopers”, and the set Q
the corresponding “certificates”. In a best-case scenario, all of the P ’s commute
with the first summation (allowing us to pull it out of the sum so that we
can view the elements of P being applied to the whole sum and not just the
summand) and the second summation in (2) collapses to zero (leaving no trace
of the certificate). From there, we would conclude that P generates a left ideal
of annihilating operators for (1), that is, it generates a set of recurrences which
are satisfied by (1).

However, life is not always that easy: during the application of this strategy
to the particular summation problem (1), we encountered the following diffi-
culties that are somewhat prototypical for the holonomic systems approach.
This explains why, despite being automatable in principle, it still lacks a press-
the-button implementation that would provide a computer proof of a claimed
identity in a completely automatic way and without any human interaction.

1. The sums in (1) do not have natural boundaries in the sense that the sum-
mands do not take on non-zero values only within the given summation
bounds. Thus, there is no reason to expect a priori that the inhomogeneous
parts (the right sum in (2)) will simplify to zero. And indeed, we found that
they did not. Thus, an additional annihilator for the right sum is required
in order to homogenize the recurrence.

2. The upper boundaries contain the variable s, and the operators in P contain
shifts in s, causing difficulties with moving P ∈ P to be outside of the sum.

3. Some of the operators inQ contain singularities at the boundary values so we
were forced to exclude these values (which required compensation elsewhere).
This is because the right sum of (2) is designed to collapse to only boundary
value evaluations and we encounter problems if the summands are undefined
at such values. Further issues could surface if those summands were also
undefined at some intermediary value. Luckily, this was not the case here.

4. Mathematica, in its symbolic zeal, interprets the innermost sum in (1) as a
hypergeometric 2F1 series and the second innermost sum as a DifferenceRoot.
While the values of the 2F1 function match with our sum within the domain
in question, there are still an infinite number of values for which it doesn’t.
The difference root is Mathematica’s version of a recurrence together with
initial values, but unfortunately not helpful for our purposes because it is
incompatible with HolonomicFunctions and does not support multivariate
recurrences that are needed for creative telescoping.
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2 A Computer Proof

This section illustrates how to overcome the difficulties listed in the previous
section and how to use the computer to prove our main result. We envision that
this discussion leads to a deeper understanding of the practical issues of applying
the holonomic systems approach, and that it will be useful for different appli-
cations in the future. The Mathematica notebook illustrating our computations
can be found in the online supplementary material [6] for the paper [5].

Theorem 1. For b,m, s ∈ N, b ≥ 2, the polynomial (1) satisfies the recurrence

(s + 2)(bx− 1) ·Gs+3

+ (m(bx− 1)(x− 1) + bsx(x− 2) + bx(x− 3)− s(2x− 3)− 3x + 5) ·Gs+2

− (x− 1)(bmx + bsx + bx + mx− 2m + sx− 3s + x− 4) ·Gs+1

+ (x− 1)2(m + s + 1) ·Gs = 0.

Proof strategy. The steps that we invoke are as follows (here we only summarize
the main ideas and omit all of the technicalities). We also perform the service of
illustrating how computers and humans interact, by highlighting (in brackets)
when paper-and-pencil reasoning is used and when automation is applied.

1. We employ the Guess package [1] (computer) to predict the recurrence which
(1) satisfies, by using sufficiently generic evaluations of (1). This step could
be postponed to the end, but here it gives us confidence that a sufficiently
nice recurrence exists, and serves as an additional sanity check.

2. The summation (1) is separated into two parts (human) in order to remove
the max function in the upper limit of the innermost sum.

After a mild simplification, these two parts look as follows:
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We write this out to highlight that they don’t have natural boundaries. In
particular, if k > m + s − 1, then there is no reason to expect that either
of the inner sums would be zero, which may cause the inhomogeneous parts
in (2) to survive.

3. The sums G
(1)
s and G

(2)
s are treated separately, applying the method of

creative telescoping and closure properties first to the inner sum of each
to obtain its annihilator and then to the outer sum (computer). We briefly
illustrate how to tackle the issues mentioned in the first section:
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? We found that some certificates Q (computer) contain singularities on the
boundary values of the inner sum. This implies that the limits of the sum
must be adjusted so that we avoid evaluating at those points. To illustrate
this more simply, suppose Q = 1

r−s−1 · Ss and F (s, k, r) is our summand.
Then it is clear that the telescoping sum

s∑
r=1

(Sr − 1) ·Q · F (s, k, r) = (Q · F )(s, k, s + 1)− (Q · F )(s, k, 1)

cannot be determined. We instead adjust the upper summation bound to
r = s − 1 and accordingly compensate (human) with additional terms that
are added to the inhomogeneous parts obtained from telescoping.

? We also found that the telescoper P (computer) does not commute with our
summation. To simplify this illustration, suppose P = S2

s , the second-order
shift operator in s, and write the summand as H(s, k). Then

P ·
m+s−1∑
k=1

H(s, k) =

m+s+1∑
k=1

H(s+ 2, k) 6=
m+s−1∑
k=1

H(s+ 2, k) =

m+s−1∑
k=1

P ·H(s, k).

This implies a necessary compensation of terms (human), namely, −H(s +
2,m+ s) and −H(s+ 2,m+ s+ 1), to be added to the inhomogeneous part,
as well as any other terms resulting from the singularity analysis above.

? Lastly, to deal with Mathematica’s enthusiasm for replacing our sums
with their version of closed forms (computer) which match the values on
our domain (but not necessarily anywhere else), we take advantage of the
fact that we can write all of the inhomogeneous parts as different shifts
and substitutions of the given summand. More precisely, the total of these
parts can be expressed as an operator applied to the summand, followed
by a substitution. Then, an annihilator for the inhomogeneous parts can
be derived (human) by applying the closure properties “application of an
operator” and “integer-linear substitution”. In this way, we completely avoid
dealing with expressions like 2F1’s and DifferenceRoots.

The above treatments enable us to compute annihilators for G
(1)
s and G

(2)
s ,

by multiplying (on the left) the annihilator of all of the inhomogeneous parts
to the telescoper P that was pulled out of the left summand of (2).

4. We use closure properties to determine the annihilating ideal for (1): the sum
of holonomic functions is still holonomic, so the annihilator of G

(1)
s + G

(2)
s

can be deduced by executing (computer) the corresponding algorithm.

5. Comparing our result, a fifth-order recurrence with considerably large coef-
ficients, with the guessed third-order recurrence reveals that creative tele-
scoping and closure properties overshot. Nevertheless, by showing that the
fifth-order operator is a left multiple of the third-order one (computer), and
by comparing initial values (human), we can conclude the assertion of The-
orem 1 is true.
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