

An Additive Decomposition in Logarithmic Towers and Beyond

Hao $\mathsf{Du}^1\text{, Jing Guo}^2\text{, Ziming Li}^2$ and Elaine Wong^1

¹ Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences (ÖAW) and ² Key Laboratory of Mathematics and Mechanization (KLMM) Chinese Academy of Sciences (CAS)

July 10, 2020

The Additive Decomposition Problem

Let $(\mathscr{F}, ')$ be a differential field.

Examples: $(\mathbb{C}(x), \frac{d}{dx})$, log/exp/algebraic extensions over $\mathbb{C}(x)$.

Let $\mathscr{F}' = \{ f' \mid f \in \mathscr{F} \}$ be the integrable space of \mathscr{F} .

Problem: Given $f \in \mathscr{F}$, compute $g, r \in \mathscr{F}$ such that

 $f = g' + r \equiv r \mod \mathscr{F}'$ \downarrow remainder

with the following two properties:

(minimality) r is minimal in some sense,

(integrability) $f \in \mathscr{F}' \iff r = 0$.

Ostrogradsky (1845) and Hermite (1872): $\mathscr{F} = (\mathbb{C}(x), \frac{d}{dx})$

proper with a squarefree denominator \uparrow Given $f \in \mathscr{F}$, there exists a simple element $r \in \mathscr{F}$ such that $f \equiv r \mod \mathscr{F}'.$ \downarrow remainder

Furthermore, $\int r \, dx$ is elementary over \mathscr{F} .

More than 140 years later...

8 van der Hoeven

Primitive Towers

 $\mathcal{F} \text{ is a primitive tower if } char(\mathcal{F}) = 0 \text{ and } \exists t_1, \dots, t_n \in \mathcal{F} \text{ s.t.}$ $K_0 \subset K_1 \subset \cdots \subset K_n = \mathcal{F},$ $(C(x), \frac{d}{dx}) \quad K_0(t_1) \quad K_{n-1}(t_n)$ where $t'_i \in K_{i-1} \setminus K'_{i-1}$ for all $i \in \{1, \dots, n\}.$ Moreover, \mathcal{F} is logarithmic if $t'_i = \frac{g'}{g}$ for some $g \in K_{i-1}.$ Example:

 $\mathbb{R}(x)(\log(x),\log(\log(x)),\operatorname{Li}(x)), \text{ where } \operatorname{Li}(x) = \int \frac{1}{\log(x)} dx.$

Primitive Towers

 $\mathscr{F} \text{ is a primitive tower if } \operatorname{char}(\mathscr{F}) = 0 \text{ and } \exists t_1, \dots, t_n \in \mathscr{F} \text{ s.t.}$ $K_0 \subset K_1 \subset \cdots \subset K_n = \mathscr{F},$ $(C(x), \frac{d}{dx}) \quad K_0(t_1) \quad K_{n-1}(t_n)$ where $t'_i \in K_{i-1} \setminus K'_{i-1}$ for all $i \in \{1, \dots, n\}.$ Moreover, \mathscr{F} is logarithmic if $t'_i = \frac{g'}{g}$ for some $g \in K_{i-1}.$ Contribution:

A Direct Sum

Definition. Assume that $\mathscr{F} = K_0(t_1, \ldots, t_n)$. $f \in \mathscr{F}$ is t_i -proper if

$$f\in {\mathcal K}_0(t_1,\ldots,t_i)$$
 and $\deg_{t_i}(n_f)<\deg_{t_i}(d_f),$

where n_f and d_f are resp. the numerator and denominator of f.

Proposition.

$$\mathscr{F} = P_0 \oplus P_1 \oplus \dots \oplus P_{n-1} \oplus P_n = \bigoplus_{i=0}^n P_i$$
$$\downarrow \qquad \qquad \downarrow K_0[t_1, \dots, t_n] \qquad \{f \in K_n \mid f \text{ is } t_n \text{-proper}\}$$

n

and for all $i \in \{1, 2, ..., n-1\}$,

$$P_i = \{p \in K_0(t_1, \ldots, t_i) | t_{i+1}, \ldots, t_n] \mid \text{coeffs}(p) \text{ are } t_i \text{-proper} \}.$$

Matryoshka Decompositions

Definition. Let $\pi_i : \mathscr{F} \to P_i$ be the *i*-th projection, $\forall i \in \{0, ..., n\}$. For $f \in \mathscr{F}$, its matryoshka decomposition is

$$f=\sum_{i=0}^n\pi_i(f).$$

An Ordering

Let \prec be the purely lexicographic order such that $t_1 \prec \cdots \prec t_n$.

For $i \in \{0, 1, ..., n\}$ and $f \in \mathscr{F}$, $hm_i(f) := highest monomial in \pi_i(f);$ $hm(f) := highest monomial among hm_0(f), hm_1(f), ..., hm_n(f).$

Definition. For $f, g \in \mathscr{F}$, we say $f \prec g$ if

Remainders and S-Primitive Towers

Let $\mathscr{F} = C(x)(t_1, \ldots, t_n)$ be a primitive tower, and $f \in \mathscr{F}$.

Definitions.

- A minimal element in $\{g \in \mathscr{F} \mid g \equiv f \mod \mathscr{F}'\}$ w.r.t. \prec is called a remainder of f.
- For $i \in \{0, 1, ..., n\}$ and $t_0 = x$, we say that $f \in \mathscr{F}$ is
 - * t_i -simple if it is t_i -proper with a squarefree denominator; * simple if $\pi_i(f)$ is t_i -simple for every *i*.
- **Solution** \mathscr{F} is S-primitive if t'_1, \ldots, t'_n are all simple.

Example: Log towers are S-primitive.

An Additive Decomposition

Let $\mathscr{F} = C(x)(t_1, \ldots, t_n)$ be an S-primitive tower.

Hermite Reduction [HR]. For any t_i -proper $f \in C(x)(t_1, \ldots, t_i)$, $\exists g \text{ and a } t_i$ -simple h in $C(x)(t_1, \ldots, t_i)$ such that

$$f=g'+h.$$

Integration by Parts [IBP]. Let $h \in C(x)(t_1, ..., t_i)$ be simple and

$$M = t_{i+1}^{e_{i+1}} \cdots t_n^{e_n} \quad \text{with} \quad e_{i+1} > 0.$$

 $\blacksquare h \equiv 0 \mod \mathscr{F}' \iff h \in \operatorname{span}_C\{t'_1, \ldots, t'_n\}.$

 $\blacksquare h \cdot M \equiv (\text{lower terms}) \mod \mathscr{F}' \iff h \in \text{span}_C\{t'_1, \dots, t'_{i+1}\}.$

Let $\mathscr{F} = \mathbb{C}(x)(t_1, t_2)$ and $f = -t_2(2t_1x + t_1 - x)/t_1^2 \in \mathscr{F}$, where $t_1 = \log(x), t_2 = \operatorname{Li}(x).$

$$f = \left(\left(-\frac{x^2}{t_1} \right)' - \frac{1}{t_1} \right) t_2 \qquad [HR]$$
$$= \left(-\frac{x^2}{t_1} t_2 \right)' + \frac{x^2}{t_1^2} - \frac{1}{t_1} t_2 \qquad [IBP]$$
$$\equiv \frac{x^2}{t_1^2} \mod \mathscr{F}'$$
$$\equiv \frac{3x^2}{t_1} \mod \mathscr{F}', \qquad [HR]$$

which gives us a remainder with a lower order than f.

Theorem. Let $\mathscr{F} = C(x)(t_1, \ldots, t_n)$ be S-primitive. For $f \in \mathscr{F}$, one can compute $g \in \mathscr{F}$ and a remainder r of f such that

f=g'+r.

Moreover, $\int f \, dx$ is elementary over \mathscr{F} if and only if

 $r \in \operatorname{span}_{C} \{ t'_{1}, \ldots, t'_{n} \} + \operatorname{span}_{C} \{ u'/u \mid u \in \mathscr{F} \},$

provided that C is algebraically closed.

Example 1

$$f = \frac{1}{\log(x)\operatorname{Li}(x)} + \frac{\operatorname{Li}(x) - 2x\log(x)}{(\log(x))^2} + \log(\log(x)).$$

View f as an element of the S-primitive tower

$$\mathscr{F} = \mathbb{C}(x)(\underbrace{\log(x)}_{t_1},\underbrace{\operatorname{Li}(x)}_{t_2},\underbrace{\log(\log(x))}_{t_3})$$

and write $f = 1/(t_1t_2) + (t_2-2xt_1)/t_1^2 + t_3$. By the theorem,

$$f = \left(\underbrace{xt_3 + \frac{t_2^2}{2} - t_2 - \frac{xt_2 + x^2}{t_1}}_{g}\right)' + \underbrace{\frac{1}{t_1t_2}}_{r}.$$

Since $r \neq 0$, f has no integral in \mathscr{F} , but $\int f \, dx = g + \log(t_2)$.

Both Mathematica and Maple leave the integral unevaluated. Raab's implementation computes the same result.

Example 2

$$f = \frac{\log((x+1)\log(x))}{x\log(x)}$$
$$\mathscr{F} = \mathbb{C}(x)\left(\underbrace{\log(x)}_{t_1}, \underbrace{\log((x+1)t_1)}_{t_2}\right)$$
$$f = \frac{t_2}{xt_1} \in \mathscr{F} \equiv \mathbf{f} \mod \mathscr{F}'$$
$$\mathscr{E} = \mathbb{C}(x)\left(\underbrace{\log(x)}_{u_1}, \underbrace{\log(x+1)}_{u_2}, \underbrace{\log(u_1)}_{u_3}\right)$$

 $f = \frac{u_2 + u_3}{xu_1} \in \mathscr{E} \equiv \frac{u_2}{xu_1} \mod \mathscr{E}'$

Associated Matrix

Definition. Let $C(x)(t_1,...,t_n)$ be a log tower. The $n \times n$ matrix

 $A = \left(\pi_i(t'_j)\right)_{0 \le i \le n-1, 1 \le j \le n}$

is called the matrix associated to $C(x)(t_1,...,t_n)$.

Definition. A log tower is well-generated if its associated matrix has the following form,

where the \bullet 's form a *C*-linearly independent list.

Theorem

A logarithmic tower can be differentially embedded into a well-generated one.

Package Demo: ADDITIVEDECOMPOSITION.M

$$f = \frac{\log\left(\frac{x^2 + x}{\log(x)}\right)\log\left(\frac{\log(x)}{x}\right) + \left(1 - \log(x) + \log\left(\frac{\log(x)}{x}\right)\right)\log\left((2 + x)\log(x)\log\left(\frac{\log(x)}{x}\right)\right)}{x\log(x)\log\left(\frac{\log(x)}{x}\right)}$$

$$\mathscr{F} = \mathbb{C}(x) \left(\underbrace{\log x}_{t_1}, \underbrace{\log(t_1/x)}_{t_2}, \underbrace{\log((x^2 + x)/t_1)}_{t_3}, \underbrace{\log((x + 2)t_1t_2)}_{t_4} \right)$$
$$f \equiv \left(\left(\frac{1 - t_1}{xt_1t_2} \right) t_4 + \text{lower terms} \right) \mod \mathscr{F}'$$
$$\mathscr{E} = \mathbb{C}(x) \left(\underbrace{\log(x)}_{u_1}, \underbrace{\log(x + 1)}_{u_2}, \underbrace{\log(x + 2)}_{u_3}, \underbrace{\log(u_1)}_{u_4}, \underbrace{\log(u_4 - u_1)}_{u_5} \right)$$
$$f \equiv \left(\left(\frac{1}{xu_1} \right) u_3 + \text{lower terms} \right) \mod \mathscr{E}'$$

Summary of Results

- We find an additive decomposition in an S-primitive tower and an embedding from a log tower to a well-generated log tower.
- An implementation of our algorithm (as a Mathematica package) with usage examples can be found here:

https://wongey.github.io/add-decomp-sprimitive/

Future Work:

- Additive decompositions in more general primitive towers and hyperexponential towers
 - Existence problem of telescopers in primitive extensions

Thank you!