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The Additive Decomposition Problem
Let (F , ′) be a differential field.

Examples: (C(x), d
dx ), log/exp/algebraic extensions over C(x).

Let F ′ = {f ′ | f ∈F} be the integrable space of F .

Problem: Given f ∈F , compute g , r ∈F such that

f = g ′+ r ≡ r mod F ′

remainder

with the following two properties:

(minimality) r is minimal in some sense,

(integrability) f ∈F ′ ⇐⇒ r = 0.
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Rational Additive Decomposition

Ostrogradsky (1845) and Hermite (1872): F = (C(x), d
dx )

proper with a squarefree denominator
↑

Given f ∈F , there exists a simple element r ∈F such that

f ≡ r mod F ′.

remainder

Furthermore,
∫
r dx is elementary over F .
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More than 140 years later...
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Primitive Towers
F is a primitive tower if char(F ) = 0 and ∃ t1, . . . , tn ∈F s.t.

K0 ⊂ K1 ⊂ ·· · ⊂ Kn = F ,
q q q

(C(x), d
dx ) K0(t1) Kn−1(tn)

where t ′i ∈ Ki−1 \K ′i−1 for all i ∈ {1, . . . ,n}.

Moreover, F is logarithmic if t ′i =
g ′
g for some g ∈ Ki−1.

Example:

R(x)(log(x), log(log(x)),Li(x)) , where Li(x) =
∫ 1

log(x)dx .

Contribution:

Primitive Towers

S-Primitive Towers

Logarithmic
Straight Flat
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A Direct Sum

Definition. Assume that F = K0(t1, . . . , tn). f ∈F is ti -proper if

f ∈ K0(t1, . . . , ti) and degti (nf )< degti (df ),

where nf and df are resp. the numerator and denominator of f .

Proposition.
F = P0 ⊕ P1 ⊕ ·· · ⊕ Pn−1 ⊕ Pn =

n⊕
i=0

Pi

K0[t1, . . . , tn] {f ∈ Kn | f is tn-proper}

and for all i ∈ {1,2, . . . ,n−1},

Pi = {p ∈ K0(t1, . . . , ti)[ti+1, . . . , tn] | coeffs(p) are ti -proper}.
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Matryoshka Decompositions
Definition. Let πi : F → Pi be the i-th projection, ∀ i ∈ {0, . . . ,n}.
For f ∈F , its matryoshka decomposition is

f =
n

∑
i=0

πi(f ).

π0(f ) +

P0 ⊕
π1(f ) +

P1 ⊕
π2(f )

P2

+

⊕ · · ·

· · · +

⊕
πn(f ) =

Pn

=

Pn

...

P2

P1

P0

f ∈F .
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An Ordering

Let ≺ be the purely lexicographic order such that t1 ≺ ·· · ≺ tn.

For i ∈ {0,1, . . .n} and f ∈F ,

hmi(f ) := highest monomial in πi(f );

hm(f ) := highest monomial among hm0(f ),hm1(f ), . . . ,hmn(f ).

Definition. For f ,g ∈F , we say f ≺ g if

degtn(df )< degtn(dg), or

degtn(df ) = degtn(dg) and hm(f )≺ hm(g).
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Remainders and S-Primitive Towers

Let F = C(x)(t1, . . . , tn) be a primitive tower, and f ∈F .

Definitions.

A minimal element in {g ∈F | g ≡ f mod F ′} w.r.t. ≺ is
called a remainder of f .

For i ∈ {0,1, . . . ,n} and t0 = x , we say that f ∈F is
? ti -simple if it is ti -proper with a squarefree denominator;
? simple if πi(f ) is ti -simple for every i .

F is S-primitive if t ′1, . . . , t ′n are all simple.

Example: Log towers are S-primitive.
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An Additive Decomposition

Let F = C(x)(t1, . . . , tn) be an S-primitive tower.

Hermite Reduction [HR]. For any ti -proper f ∈ C(x)(t1, . . . , ti),
∃ g and a ti -simple h in C(x)(t1, . . . , ti) such that

f = g ′+h.

Integration by Parts [IBP]. Let h ∈ C(x)(t1, . . . , ti) be simple and

M = tei+1
i+1 · · · t

en
n with ei+1 > 0.

h ≡ 0 mod F ′ ⇐⇒ h ∈ spanC{t ′1, . . . , t ′n}.

h ·M ≡ (lower terms) mod F ′ ⇐⇒ h ∈ spanC{t ′1, . . . , t ′i+1}.
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Example: HR and IBP

Let F = C(x)(t1, t2) and f =−t2(2t1x + t1−x)/t2
1 ∈F , where

t1 = log(x), t2 = Li(x).

f =
((
− x2

t1

)′
− 1

t1

)
t2 [HR]

=

(
− x2

t1
t2
)′

+
x2

t2
1
− 1

t1
t2 [IBP]

≡ x2

t2
1

mod F ′

≡ 3x2

t1
mod F ′, [HR]

which gives us a remainder with a lower order than f .
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Main Result

Theorem. Let F = C(x)(t1, . . . , tn) be S-primitive. For f ∈F , one
can compute g ∈F and a remainder r of f such that

f = g ′+ r .

Moreover,
∫
f dx is elementary over F if and only if

r ∈ spanC{t ′1, . . . , t ′n}+ spanC{u′/u | u ∈F},

provided that C is algebraically closed.
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Example 1

f = 1
log(x)Li(x) +

Li(x)−2x log(x)
(log(x))2 +log(log(x)).

View f as an element of the S-primitive tower

F = C(x)(log(x)︸ ︷︷ ︸
t1

,Li(x)︸ ︷︷ ︸
t2

, log(log(x))︸ ︷︷ ︸
t3

),

and write f = 1/(t1t2)+(t2−2xt1)/t2
1 + t3. By the theorem,

f =
(
xt3 +

t2
2
2 − t2−

xt2 + x2

t1︸ ︷︷ ︸
g

)′
+

1
t1t2︸︷︷︸

r

.

Since r 6= 0, f has no integral in F , but
∫
f dx = g+log(t2).

Both Mathematica and Maple leave the integral unevaluated.
Raab’s implementation computes the same result.
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Example 2

f = log((x +1) log(x))
x log(x)

F = C(x)
(
log(x)︸ ︷︷ ︸

t1

, log((x +1) t1)︸ ︷︷ ︸
t2

)
f = t2

xt1
∈F ≡ f mod F ′

E = C(x)
(
log(x)︸ ︷︷ ︸

u1

, log(x +1)︸ ︷︷ ︸
u2

, log(u1)︸ ︷︷ ︸
u3

)
f = u2 +u3

xu1
∈ E ≡ u2

xu1
mod E ′
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Associated Matrix

Definition. Let C(x)(t1, . . . , tn) be a log tower. The n×n matrix

A=
(
πi(t ′j)

)
0≤i≤n−1,1≤j≤n

is called the matrix associated to C(x)(t1, . . . , tn).

t ′1 t ′2 · · · t ′n
↓ ↓ ↓


P0 → ? ? · · · ?

P1 → ? · · · ?
...

. . .
...

Pn−1 → ?
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Well-Generated Log Towers

Definition. A log tower is well-generated if its associated matrix
has the following form,

• · · · •
• · · · •

. . .

• · · · •

 ,

where the •’s form a C -linearly independent list.

Theorem
A logarithmic tower can be differentially embedded into a
well-generated one.
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Package Demo: AdditiveDecomposition.m

f =
log
(

x2+x
log(x)

)
log
(

log(x)
x

)
+
(

1−log(x)+log
(

log(x)
x

))
log
(
(2+x) log(x) log

(
log(x)

x

))
x log(x) log

(
log(x)

x

)
F = C(x)

(
logx︸︷︷︸

t1

, log(t1/x)︸ ︷︷ ︸
t2

, log((x2 + x)/t1)︸ ︷︷ ︸
t3

, log((x +2)t1t2)︸ ︷︷ ︸
t4

)

f ≡
((1− t1

xt1t2

)
t4 + lower terms

)
mod F ′

E = C(x)
(
log(x)︸ ︷︷ ︸

u1

, log(x +1)︸ ︷︷ ︸
u2

, log(x +2)︸ ︷︷ ︸
u3

, log(u1)︸ ︷︷ ︸
u4

, log(u4−u1)︸ ︷︷ ︸
u5

)

f ≡
(( 1

xu1

)
u3 + lower terms

)
mod E ′
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Summary of Results

We find an additive decomposition in an S-primitive tower and
an embedding from a log tower to a well-generated log tower.
An implementation of our algorithm (as a Mathematica
package) with usage examples can be found here:

https://wongey.github.io/add-decomp-sprimitive/

Future Work:
Additive decompositions in more general primitive towers and
hyperexponential towers
Existence problem of telescopers in primitive extensions

Thank you!
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