A APPENDIX

For the convenience of the readers, we list definitions, a lemma, some theorems and a corollary that we use from other books and papers but did not explicitly state in the paper.

Definition A.1. (Definition 5.1 .1 in [1]) Suppose k is a differential field and K is a differential extension of k. We say that
(i) $t \in K$ is a primitive over k if $D t \in k$,
(ii) $t \in K^{*}$ is a hyperexponential over k if $D t / t \in k$, and
(iii) $t \in K$ is Liouvillian over k if t is either algebraic, a primitive, or a hyperexponential over k.
K is a Liouvillian extension of k if there are t_{1}, \ldots, t_{n} in K such that $K=k\left(t_{1}, \ldots, t_{n}\right)$ and t_{i} is Liouvillian over $k\left(t_{1}, \ldots, t_{i-1}\right)$ for $i \in\{1, \ldots, n\}$.

Definition A.2. (Definition 5.1.2 in [1]) Suppose k is a differential field and K is a differential extension of k. We say that $t \in K$ is a Liouvillian monomial over k if t is transcendental and Liouvillian over k and $C_{k(t)}=C_{k}$.

Definition A.3. (Definition 5.1.3 in [1]) $t \in K$ is a logarithm over k if $D t=D b / b$ for some $b \in k^{*} . t \in K^{*}$ is an exponential over k if $D t / t=D b$ for some $b \in k . t \in K$ is elementary over k if t is either algebraic, or a logarithm or an exponential over $k . t \in K$ is an elementary monomial over k if t is transcendental and elementary over k, and $\operatorname{Const}(k(t))=\operatorname{Const}(k)$.

Definition A.4. (Definition 5.1.4 in [1]) K is an elementary extension of k if there are t_{1}, \ldots, t_{n} in K such that $K=k\left(t_{1}, \ldots, t_{n}\right)$ and t_{i} is elementary over $k\left(t_{1}, \ldots, t_{i-1}\right)$ for i in $\{1, \ldots, n\}$. We say that $f \in k$ has an elementary integral over k if there exists an elementary extension E of k and $g \in E$ such that $D g=f$. An elementary function is any element of any elementary extension of $(\mathbb{C}(x), d / d x)$.

Theorem A.5. (Theorem 5.1.1 in [1]) If t is a primitive over a differential field k and Dt is not the derivative of an element of k, then t is a monomial over $k, C_{k(t)}=C_{k}$, and $S=k$. Conversely, if t is transcendental and primitive over k and $C_{k(t))}=C_{k}$, then Dt is not the derivative of an element of k.

Theorem A.6. (Theorem 5.3.1 in [1]) Let $f \in k(t)$. Using only the extended Euclidean algorithm in $k[t]$, one can find $g, h, r \in k(t)$ such that h is simple, r is reduced, and $f=D g+h+r$. Furthermore, the denominators of g, h and r divide the denominator of f, and either $g=0$ or $\mu(g)<\mu(f)$.

Lemma A.7. (Lemma 2.1 in [2]) Let $g \in K[t]+K(t)^{\prime}$. Then $g=0$ if it is t-simple.

Theorem A.8. (Theorem 3.1.1 (v) in [1], Logarithmic Derivative Identity) Let (R, D) be a differential ring. If R is an integral domain, then

$$
\frac{D\left(u_{1}^{e_{1}} \cdots u_{n}^{e_{n}}\right)}{u_{1}^{e_{1}} \cdots u_{n}^{e_{n}}}=e_{1} \frac{D u_{1}}{u_{1}}+\cdots+e_{n} \frac{D u_{n}}{u_{n}}
$$

for any $u_{1}, \ldots, u_{n} \in R^{*}$ and any integers e_{1}, \ldots, e_{n}.
Definition A.9. (Definition 5.1.4 in [1]) K is an elementary extension of k if there are t_{1}, \ldots, t_{n} in K such that $K=k\left(t_{1}, \ldots, t_{n}\right)$ and t_{i} is elementary over $k\left(t_{1}, \ldots, t_{i-1}\right)$ for $i \in[n]$. We say that $f \in k$ has an elementary integral over k if there exists an elementary extension E of k and $g \in E$ such that $D g=f$. An elementary function is any elementary extension of $(\mathbb{C}(x), d / d x)$.

Theorem A.10. (Theorem 5.5.2 in [1], Liouville's Theorem) Let K be a differential field with an algebraically closed constant field and $f \in K$. If there exists an elementary extension E of K and $g \in E$ such that $D g=f$, then there are $v \in K, u_{1}, \ldots, u_{n} \in K^{*}$ and $c_{1}, \ldots, c_{n} \in \operatorname{Const}(K)$, such that

$$
f=D v+\sum_{i=1}^{n} c_{i} \frac{D u_{i}}{u_{i}} .
$$

Definition A.11. (Chapter 2, Definition 3 in [3], Lexicographic Order) Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ be in $\mathbb{Z}_{\geq 0}^{n}$. We say $\alpha>_{\text {lex }} \beta$ if the leftmost nonzero entry of the vector difference $\alpha-\beta \in \mathbb{Z}^{n}$ is positive. We will write $x^{\alpha}>_{\text {lex }} x^{\beta}$ if $\alpha>_{\text {lex }} \beta$.

Corollary A.12. (Corollary 1' in [4, Page 124]) Let K be a field and let $F=K(S)$ be a purely transcendental extension of K; here S denotes a set of generators of F / K which are algebraically independent over K. Let $x \rightarrow u_{x}$ be a mapping of S into a field L containing F. If D is any derivation of K with values in L, then there exists one and only one derviation D^{\prime} of F extending D, such that $D(x)=u_{x}$ for all x in S.

REFERENCES

[1] M. Bronstein. Symbolic Integration I : transcendental functions. Berlin: Springer-Verlag, 2005.
[2] S. Chen, H. Du and Z. Li. Additive decompositions in primitive extensions. Proceedings of the 2018 International Symposium on Symbolic and Algebraic Computation. New York, USA: ACM, 135-142.
[3] D. Cox, J. Little, D. O'Shea. Ideals, Varieties and Algorithms. Fourth Edition, Springer, 2015.
[4] O. Zariski and P. Samuel. Commutative Algebra I. Graduate Texts in Mathematics, Springer, 1975.

